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Abstract-Approximate velocity profiles are developed and a new transformation is introduced to reduce the 
heat transfer problem for laminar forced convection inside a diverging or converging planar symmetric duct 
subjected to uniform wall temperature to the standard thermal entrance region problem of Graetz type for 

flow between two parallel plates. 

DC, 
L, 
P, 
Pe, 
pr, 
Q(Y7 z), 
Re, 

U(Y, 4, 

NOMENCLATURE INTRODUCTION 

equivalent diameter at z = 0, 4L; 
half-spacing of conduit at z = 0; 

pressure; 
P&let number ; 
Prandtl number; 
flow rate defined by equation (10); 
Reynolds number, 

NUMEROUS extensions of the original Graetz problem 
[l] have appeared in the literature for laminar forced 
convection inside a circular tube or a parallel plate 
conduit. There are also numerous practical appli- 
cations in which the cross-sectional area for flow varies 
with the distance along the direction of flow. Zerkle 
and Sunderland [2] used approximate velocity profiles 
and introduced a transformation in order to reduce the 
problem of forced convection inside a circular tube 
with varying cross-section to the thermal entry region 

problem for a circular tube with uniform cross-section. 
The transformation used by Zerkle and Sunderland is 

not applicable for a planar symmetric duct of varying 
cross-section. Therefore, the objective of this work is to 
develop suitable velocity profiles and a new transfor- 
mation that will reduce the heat transfer problem for 
laminar forced convection inside a planar symmetric 
duct of varying cross-section to the standard thermal 

entrance region problem for forced convection be- 
tween two parallel plates. 

%(0)4L or &&)4~(z) . 
V V 

temperature ; 
the inlet and the wall temperatures 

respectively ; 
the axial velocity component ; 

4&% k&)> the mean axial velocity at z = 0 and z, 
respectively; 

4Y,ZX the normal velocity component ; 

Y, z, transverse and axial coordinates; 

Y, z; dimensionless coordinates defined by 

equations (15). 

Greek symbols 

k,. 
thermal diffusivity ; 
half-spacing of the channel at the 
location z ; 

4 dimensionless half-spacing of the channel 

atz 60. 
’ L ’ 

~744 ; 
T-T 

dimensionless temperature, 2 
To - T, ’ 

V, 

PV 

kinematic viscosity; 
density. 
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ANALYSIS 

An incompressible, constant property, Newtonian 

fluid at a uniform temperature To flows in steady, fully 
developed laminar flow between two thermally in- 
sulated parallel plates separated by a distance 2L 
before entering the heat transfer section. At the origin 
of the axial coordinate, z = 0, the fluid enters the heat 

transfer section with a fully developed velocity profile, 
u(y). In the heat transfer section, z > 0, the cross- 
sectional area for flow varies monotonically with the 
distance z in the direction of flow, but retains a planar 
symmetry about the z-axis. Figure 1 illustrates the 

geometry and the coordinates for a converging chan- 
nel ; one may similarly envisage a diverging channel. It 
is assumed that the walls of the channel in the heat 
transfer section, z > 0, are maintained at a uniform 
temperature T,,,, while the walls of the channel in the 
region z < 0 are kept thermally insulated (i.e. no heat 
transfer). We neglect viscous energy dissipation and 
the axial heat conduction in the fluid. 
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T=T,., 

insulated 

T=T, 

FIG 1. Geometry and coordinate system. 

The governing equations for the 2-dim. flow field are 

The continuity equation 

+ 
do+rlc=O. 
iiy (72 

(1) 

The momentum equation for the y-direction 

The momentum equation for the z-direction 

The boundary conditions for the velocity problem 
are taken as 

U(Y, z) = 0, U(Y, z) = 0 at Y = 6(z) (4a,b) 

u(y.z)=~u~(O)[L - (ir] at z=O (4~) 

P(Y? 2) = PO at z = 0. (4d) 

Neglecting the axial conduction and theviscous energy 
dissipation, the temperature distribution in the fluid is 

governed by the energy equation taken as 

,F + Ug = GL?2T(~,z) 

dY Llyz 

in 0 < y < 6(z), z > 0 (5a) 

and the boundary conditions as 

8T 
-_=O at 
SY 

y = 0, z > 0, (5b) 

T = T, at y = C?(z), z > 0, (5c) 

T = To at z = 0, in 0 < y < 6(z). (5d) 

If the velocity components are determined from the 
solution of equations (l)-(4), then the temperature 

distribution in the fluid is determined from the so- 

problem defined by equations (l))(4). Therefore, we 

seek an approximate method of analysis for the 
velocity problem. 

It is assumed that the variation of the duct cross- 
section with the distance along the direction of flow is 
sufficiently smooth and gradual so that the axial 
component of the velocity, u(y, z), retains a parabolic 
profile, but its magnitude changes to satisfy the 
requirement of continuity. In the case of liquids, this 
assumption is more valid for the cooling of a liquid in a 
converging duct or the heating of a liquid in a diverging 
duct. The reason for this is that the velocity profile 
becomes flatter for isothermal flow in a converging 
duct while the viscosity variation during the cooling of 
a liquid tends to increase the velocity in the central 

region and decrease it near the walls. As a result, these 
two opposing effects tend to offset each other for the 

cooling of a liquid in a converging duct or conversely 
for the heating of a liquid in a diverging duct. 

With these considerations we choose u(y,z) in the 

form 

where the mean axial velocity u,(z) at the axial 
location z is related to the mean axial velocity u,(O) at 
the origin z = 0 by the continuity equation as 

L 
Mz) = 6(z) u,(O). (7) 

Then the axial velocity profile u(y,z) becomes 

4Y, z) = ~um&[1 - (&))i]. t8) 

To determine the corresponding transverse velocity 
component u(y, z) we consider the flow rate, Q(y, z), 
through a cross section area bounded by y = 0 to y and 
a unit depth perpendicular to the plane of the figure at 
the axial location z. Then the variation of Q( y, z) across 
a differential distance dz is related to v( y, z) by 

lution of the energy problem given by equations (5). It 
is unlikely to obtain an analytic solution to the velocity 

u(y,z) = - sy 
II 



and Q(y, z) is determined as 

Q(y,z) = 2 
s 

)‘u(y:z)dy: 
0 

a 1 a a2 i a2 - -=__ (16c,d) ij=h a9’aj2 A2 a+ 
(10) and 

Equation (8) is introduced into equation (10) and the a jjdAa ld 

integration is performed 
z=- -- 

A2 dZ %+a z’ 
(I6e) 

Under the transformation (16), the energy equation 
(14) simplifies to 

When equation (11) is substituted into equation (9), 

the transverse velocity component, u(y,z), is deter- 
(l-~2)~=$.inO<~<l,<z0 (17a) 

mined as subject to the boundary conditions 

U(Y9 2) = ; u,(O) [$,’ ---[l - (&TjF. (12) 
do 
-=0 at r1=0,(>0, 
aq 

(17b) 

Clearly, the velocity components (8) and (9) satisfy 
both the continuity requirement and the velocity 
boundary conditions 4(a, b, c). 

B=O at r~=l,c>O, (17c) 

B= 1 at l=O,in 0s~ < 1. (17d) 

Now introducing the velocity components given by 

equations (8) and (12) into the energy equation (Sa) we 
The temperature problem defined by equations (17) 

obtain 
is the standard Graetz type thermal entrance region 
problem for flow between two parallel plates and its 
solution is available [3, 43. Knowing the temperature 

distribution, the local Nusselt number is determined as 
a function of the dimensionless axial variable 5. The 

+&_(O)~ 
1 

= a$_ (13) 
relation between 5 and the axial variable z is de- 
termined according to equation (16b). 

This equation is expressed in the dimensionless form as 
The foregoing analysis is valid for both converging 

and diverging ducts provided that the duct profile 
varies smoothly with the distance in the direction of 
flow. In the case of convergent ducts, the reduction in 

the duct spacing, 6(z), does not give rise to an increase 

where the various dimensionless quantities are detined 
in the Reynolds number, hence there will be no 

as 
eventual change of the flow regime from laminar to 
turbulent. To illustrate this matter, let Q, = u&)6(z) 

Y 
Y =- 
L' 

be the flow rate per unit depth at axial location z and 

the Reynolds number defined as Re = [u,(z)~~(z)]/v. 

@I Then we have Re = 4Q/v, which implies that the 
A =- 

L’ Reynolds number remains the same everywhere along 
the duct. 

and 
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CONVECTION FORCEE LAMINAIRE DANS DES CONDUITES CONVERGENTES OU 
DIVERGENTES A SYMETRIE PLANE 

RPsum&Des profils de vitesse approches sont obtenus et une mouvelle transformation est introduite pour 
resoudre le probleme du transfert thermique en convection for&e laminaire dans une conduite divergente ou 

convergente a symetrie plane, soumise a une temperature de paroi uniforme pour le probleme de la region 

d’entree thermique du type de Graetz pour l’ecoulement entre deux plans paralleles. 

LAMINARE ERZWUNGENE KONVEKTION IN KONVERGENTEN ODER DIVERGENTEN 
EBENEN SYMMETRISCHEN KANALEN 

Zusammenfassung-Es werden Naherungen fur die Geschwindigkeitsprofile entwickelt und eine neue 
Transformation eingefiihrt, mit deren Hilfe das Warmeiibergangsproblem fur laminare erzwungene 
Konvektion in einem divergenten oder konvergenten ebenen symmetrischen Kanal bei einheitlicher 
Wandtemperatur auf das bekannte Problem der thermischen Einlaufstromung nach Graetz fiir die 

Stromung zwischen zwei parallelen Platten zuriickgefiihrt werden kann. 

JlAMMHAPHAR BbIHY)KflEHHAII KOHBEKHMII B CXOJDHlH4XCR MJIM 
PACXO~Jl~MXCSI fIJIOCKMX CMMMETPMqHbIX KAHAJIAX 

AHHoTaunn - ffOnyYeHbt npU6JWKeHHbIe npO@iJIU CKOpOCTn H npennoxeH0 Hoaoe npeo6pa3oaanne 
AJIR npABeAeHRs 3aAa’IU TenJlOnepeHOCa npn AaMAHapHOfi BbIHyLKAeHHOf-4 KOHBeKUnW B paCXOASUUeMCR 

UAH CXOARmeMCII n,tOCKOM CnMMeTpFIHOM KaHaAe C OAHOpOAHOi? TeMnepaTypOfi CTeHKn K 06bISHOfi 

sanage rennoo6Mena 2nna Fperua nnn TegeHUa Meaty AB~MH napannenbnbrMw nnacTnHaMn. 


